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The classical problem .3f the time-optimal control of the motion of a point mass is considered, with the control accomplished by 
applying a force of limited magnitude. Open- and closed-loop control laws are constructed that ensure intersection with a sphere 
(from outside or inside) in a coordinate space of arbitrary dimensions. The maximum principle is used to show that the control 
is of maximum magnitude and maintains a constant direction, while the optimal trajectories are parabolas; the general situation 
of a multi-dimensional space is equivalent to the two-dimensional (plane) ease. The feedback controls and optimal time of motion 
are constructed as functions of the phase coordinates, the Bellman function of the problem is analysed in detail, qualitative 
properties of the control and the optimal time of motion in the neighbourhood of the critical phase states of the system are 
determined. Mathematical simulation is used to construct a section of the Bellman function over a large range of motion 
parameters; the results are compared with those of analytic and asymptotic studies. © 1997 Elsevier Science Ltd. All rights reserved. 

Time-optimal control of the motion of a point mass by bounded and impulse forces, in a variety of 
formulations, is one of the basic models in applications of optimal control theory and methods [1-5], 
as well as in other areas. 

The problem of time-optimal intersection with a sphere of arbitrary radius, defined in a geometrical 
space (disregarding velocity), is of interest in both theoretical and applied aspects. It provides a good 
approximate model for investigating such space flight problems as a controlled object entering the 
"sphere of attraction" of a celestial body or escaping from that sphere. It may also be considered as an 
extension of the problem of reaching a fixed geometrical point to the problem of reaching the 
neighbourhood of the origin or of a point target moving at a fixed velocity. 

1. F O R M U L A T I O N  OF THE PROBLEM 

We will consider an optimal control problem of the following form [1, 5] 

~=v ,  O=u, X , V , u ~ E  N, x(0)=x  °, u(0)=u ° 
(1.1) 

x ( t / ) ~ S r ,  S r={x : l x l=r} ,  t l - - 4 m i n ,  l u l ~ u  O 

We assume, without loss of generality, that the sphere is centred at the origin. Problem (1.1) will be 
investigated in a situation of general position, when 0 < u0, r < ,~. Introduction of dimensionless 
variables by using ~:he length r and the time x = (r/uo) l/z as scales yields Eqs (1.1) with r = 1, u0 = 1. 
Thus simplified, the system involves no parameters, and the solution will be defined by arbitrary 

0 values of the n-vecr.ors x °, v °. Note that the point x may be situated either inside (I x ° I < 1) or outside 
(Ix°l > 1) the spherical region B bounded by the unit sphere S1 (Ix I = 1). 

A solution of the control problem exists for arbitrary values of x °, v ° ~ E ~. To construct optimal 
control laws we will apply the necessary conditions of the maximum principle [1]. We introduce variables 
adjoint tox, v, denoted byp, q. From the condition for the Hamiltonian to attain a maximum we obtain 
the expression for u 

u* = qlql-l  m rl, q ¢~O (1.2) 

Let us consider the two-point boundary-value problem corresponding to the control u* of (1.2). On 
partially solving the' problem we obtain 
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= o, 6 = rl, x(O) = x °, o(0) = u °, ]xft: ~ = I 

p(t) = - p(t/ ) = pl, q(t)= p/ (t/ -t), p/ = Lx(t/ )Ix(t/ ~ -l 
(1.3) 

The Lagrange multiplier k, together with the constant vectorp / and minimum time tf, are to be deter- 
mined as a solution of the boundary-value problem (1.3). 

It follows from (1.2) and (1.3) that wheneverx ° e SI we have IP:l > 0, that is, the control u* is non- 
singular. Since the Hamiltonian is homogeneous, we can normalize the vector/¢by, dividing it by I Pfl 
so that IpYl = 1. It then follows from (1.3) that ~ = +-1, with Z. = 1 ifx ° ~ B, i.e. Ix ° I < 1, and X = -1 
ifx ° ~- B, i.e. Ix ° I > 1, where B is the interior of the unit sphere of the same dimensionality as the 
space, bounded by the sphere S1. In addition, we infer from (1.3) that the control u* of (1.2) is orthogonal 
to the plane touching the sphere at the point of intersection defined by the unit vector x f, since u* = 
kxf, x f = x(tl), Ix I I = 1. 

Thus, we have constructed an optimal open-loop control, which turns out to be constant and of unit 
magnitude, while the trajectories are parabolas. The direction of the control vector is collinear (x ° 
B) or anti-collinear (x ° ~ B)  with the unit vector f f o f  the point at which the trajectory cuts the sphere, 
at time t/. The quantities xJand t /are still undetermined (in all, there are n unknown constants). 

2. S O L U T I O N  OF T H E  B O U N D A R Y - V A L U E  P R O B L E M  OF T H E  
M A X I M U M  P R I N C I P L E  

To fred the unknown parameters x f and tf, we integrate the Eqs (1.3) forx  and v on the assumption 
that u* % rl = pY. Equating x(t/) = x f, we solve this as an equation for ~ and note the equalities 
~1 = P', I x~ I = 1 and the transversality condition (1.3); this gives the expressions 

T l = - ( x  ° + u ° t l ) ( t ~ / 2 - ~ , )  -I, x ! ='~/~.. ~,=:1:1, Ix°l ~ 1 (2.1) 

where tf is the unknown optimal time of motion, determined as the minimum positive root of the 
following fourth-degree algebraic equation 

(t~ / 2 - x)2 = 12 + 2cth t I + h2t~ (2.2) 

,:1/°1 , I, - '  

Note that Eq. (2.2) follows immediately from (2.1), as can be verified by squaring one of the vector 
expressions. In addition, in the case of a sphere of "zero radius" (the point hits the origin) one obtains 
an equation of type (2.2) for tf, in which one must formally put ~. = 0 [1, 5]. 

Our next efforts will be directed at determining and investigating the minimum positive root t~ of 
Eq. (2.2). It depends on the values of three parameters 

t / = t / ( h , c , l ) ,  h > ~ O , - l ~ < c ~ l ,  1~>0; ~.=+1, 1~- 1 (2.3) 

A simple analysis shows that Eq. (2.2) always has a positive real root (and a negative one), i.e. the 
time-optimal problem is solvable. Note that there are possible situations in which two additional positive 
roots exist or one double root exists (see below, and also [5]). 

It follows from the above constructions that this problem of motion of a point in the n-space is 
essentially equivalent to the two-dimensional problem (n = 2). The optimal trajectories lie in the plane 
spanned by the non-collinear vectorsx °, v ° (I c I < 1). This conclusion follows obviously from the central 
symmetry of the control problem. It is corroborated by the fact that the solution is determined in all 
by the three quantities h, I and c. The case of motion along a straight line (c = +__1) turns out to be 
degenerate (critical). 

Suppose that the minimum time tf* (2.3) has been determined analytically (see Section 3, e.g. by using 
Cardano's, 0 0 formulae), or numerically (Section 4). Then the required optimal control, m" open-loop form 
u x v the umt vector of the intersection of the s h e r e ' *  and t * * e( , ), ' " p he phase trajectoryx (t), v (t) are 
given by the following expressions 

(2.4) 
x" = x ° + C t  + ½"q't 2, t," = u ° + ~ ' t ,  0 ~< t <~ t~, 
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Let us assume that the quantity t:* has been determined as a function of the vectors x ° and u ° in 
• • • " 0 0 0 sufficiently large domams of possible values: x ~ D~ C E", B C D~, v ~ Dx, v ~ D~ C E ~. Then formulae 

(2.3) and (2.4) define a solution of the synthesis problem in the domain D~ x D~, that is, the Bellman 
function of the problem 0 and a feedback control u* 

O(x,u)=t'/(h,c,l) ,  h=lul, l=lxl, c=cos(x ,v )  

(2.5) 
u*s(x,u)=-(x+uO)(O 2 /2 -2~)  -I, ~=:1:1, l ~  1 • 

We will investigate the dependence of  the roots t~ on the variables h, c and I in the neighbourhood 
of certain characteristic values of these motion parameters, which have an obvious geometrical and 
mechanical meaning. 

3. L O C A L  I N V E S T I G A T I O N  OF T H E  A N A L Y T I C  P R O P E R T I E S  OF T H E  
B E L L M A N  F U N C T I O N  

We will consider approximate expressions and asymptotic expressions for 0 as a function of arbitrary 
admissible values of the variables h, c, l and the discrete parameter ~.. According to Section 2, 0(h, c, 
l, k) = min arg Q(O) > 0. 

Q(0) " (02  / 2 - ~)2 _ I 2 _ 2clhO - h202 = 0 (3.1) 

3.1. Behaviour o f  the Bellman function near the centre of  the sphere. Let us investigate the behaviour 
of the function 0(h, c, l, k) for 0 ~< l ,~ 1 (k = 1), using standard methods of perturbation theory [5-7]. 
Setting I = 0, we obtain from (3.1) 

00(h) = ,~/2(h 2 + 1 + ((h 2 + 1) 2 - 1) )~ )-~ (3.2) 

which does not depend on c. By (2.5), the optimal control us* must point along the vector v(0~/2 < 1 
for h > 0). The case h = 0 (1 = 0) is singular: the control may point in any direction if I = h = 0, as is 
obvious. As time elapses and h > 0, 1 > 0, the ambiguity vanishes; the control, velocity and position 
vectors will be eollinear (no allowance is being made for perturbations). Note that the function 
00(h) (3.2) (and also 0(h, c, l , / ))  tend to zero like h -l as h --~ ~ (see Sections 3 and 4). 

Let h > 0 (h - 1); then the root 00 (3.2) is simple and one has the following representation for 0 

O(h,c,l,l)=Oo(h)+lOi +1202 +13 . . . .  01 =2chd-I 
(3.3) 

02 = (2ch + 01 (h  2 + 1))01 ( 0 0 d )  -I . . . . .  d = - 2 h ( h  2 + 2)  ~ 

If h > 0, then d < 0, and expansions (3.3) are absolutely and uniformly convergent for sufficiently 
small I > 0. The required root 0 may also be determined by successive approximations. The coefficients 
are such that 0i - h -1 as h -~ 0-, which is obvious. 

Let  us consider an almost degenerate situation. The following subcases are of interest: (a) h - l, 
(b) h - l 1/2 (l "~ h "~ 1), and (c) h - 12 (0 < h <~ 1). Consider the first, i.e. l = eL, h = eJ-/, where 
0 < e "~ 1, L, H - 1; then we find that 

0 ---- 00 "F ~01 '4" C202 -I- E 3 . . . .  00 = "V~, 01 = - (L  2 + 2cLH0 o + H20 g)y2 0o I (3.4) 

02 = (cLH+ H2O0)002 - ~0120~ I .... (e I ;~ 0) 

The quantities 00 and 01 obtained above have simple mechanical meanings and need no comment. 
Not so the case 0:t = 0, which needs further analysis; but that situation arises only when c = -1, 
x/(2)H = L. The construction of the solution is also elementary; if 01 - e, then 0 = 00 + e202 + e 3 • • • 
for 02 ;~ 0 (the case. 01 = 02 = 0 occurs when L = 0, H = 0). 

It follows from an analysis of formulae (3.3) for the coefficients 0i that these expansions are also valid 
I/2 • • 1/2 in subcase (b), i.e..h = e/2H, l = eL. Strictly speaking, however, the small parameter l~ere is e . 

Let us expand 0 in powers of e in subcase (c), when h = E2H, 1 = eL. Applying a standard procedure 
of perturbation theory, we obtain the required expression of type (3.4) 
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Oo=x/2,  O,=-LI'V~, 02=-¼L2/x / -2 -2cH .... 

The physical meaning of the coefficients 0i (i = 0, 1, 2 . . . .  ) is fairly clear and needs no comment. 
This completes the investigation of the Bellman function 0 when the point is situated near the centre 
of the sphere (the origin); see Section 4. 

3.2. Asymptotic investigation of the Bellman function at great distances. Let us consider the reverse 
situation, when I -> 1 (~. = -1). It follows from an analysis of Eq. (3.1) that 0 - lU2; a good small parameter 
will be ~t = l -I/2. The expansions for 0 are asymptotic expansions: 0 = ~10_1 + 00 + P-01 + la 2 . . . .  
Standard methods yield the unknown coefficients 0i; as a result we obtain the required expression 

0 = "~-21 ~ + ch + (4h 2 - c2h 2 - 2)(8/) -~j + O(h 3 I l) (3.5) 

The first term in (3.5) is the (approximate) duration of the motion, the second is a compensation for 
the distance from the centre of the sphere, the third is a correction obtained by allowing for the dimension 
of the sphere. Formula (3.5) is adequate for estimates at h - 1; if necessary, one can determine further 
terms of the expansion. The situation in which h ~> 1 (and I -> 1) requires a special study, which will 
be carried out below, in Section 3.5. 

3.3. Behaviour of the Bellman function near a state of rest. Let us consider the case of low velocity 
0 <~ h ,~ 1, on the assumptions that l - 1. The situation I <~ 1 and I -> 1 has already been considered 
(Sections 3.1 and 3.2). We will seek 0 as expansions in powers of the small parameter  h, as in the case 
of (3.3) and (3.4) 

0 = 00 + h01 + h202 + h 3 .... 00 - -if211 - II Y2 , l ~: I, 01 = :l:c (3.6) 

02 =(T- 2c21+(2- 3c2)ll-ll+c2)d-t, d =T-2~f2lll-ll½ ~O 

The upper signs in these expressions for 01 and 02 correspond to the condition 0 < l < 1, and the 
lower signs correspond to I > 1, where I - 1 and I l -  1 1 - 1; the situation I l - 1 1 - e "~ 1 will be studied 
below, in Section 3.6. The kinematic meaning of the coefficients 0i (3.6) is sufficiently clear; 00 
corresponds to the duration of motion to the sphere along a straight line from zero initial velocity, and 
01 makes allowance for the magnitude and direction of the velocity, which is asymptotically small; the 
coefficient 02 is more complicated to treat, as it incorporates some rather subtle effects. 

3.4. Asymptotic analysis of the Bellman function at high velocities. In the case h >3> 1 the function 0 may 
have both regular (0 - h- ' )  and singular (0 - h) representations. The first possibility clearly occurs 
when I < 1 or I > 1 under the conditions - 1 ~< c < 0, I s II ~< 1; these conditions have an obvious geo- 
metrical meaning. But if I > 1 and I s II > 1 ("missed target"), one has the second possibility (singular 

• < < 2 2  ~ 2 2 • - - -  e x p a n s i o n s ) .  The case c 0, 0 1 - s l ,~ 1, where s = 1 - c ,  reqmres a separate study. 
For convenience we will introduce a small parameter  ~ = h -1 and transform Eq. (3.1) to the form 

~2(02  / 2 _ ~ , ) 2  =~212  + 2 ~ C / 0 + 0 2  l ~  1 (3.7) 

Considering the first possibility, we construct regular expansions in powers of 

0 = 0 0 + ~ 0 1 + ~ 2 0 2 + ~ 3 0 3 + ~ 4  .... 0 0 = 0 .  0 I = 0 ~ : = - c l + d  

+ 
:I:01 0 F - (0~)2)d-I  d = (I - $212 )~ 

(3.8) 

The upper signs correspond to k = 1, i.e. l < 1, and ~. = -1, i.e. l > 1, respectively• The behaviour 
of the coefficients 0i depends radically on the quantity s212, as already pointed out. If d 2 > 0, which is 
the case when x ~ B (l < 1), the regular expansions (3.8) hold and yield the required representation 
of the Bellman function. When I > 1 the expansion is again regular if c < 0 and d 2 > 0. In the critical 
case d 2 = 0 the expansions are still valid. The expressions for 0i are then 

0 o=0,  0 I=-c l ,  02=( -c / )  )~, 0 ~ = ~  .... (3.9) 
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In the near-critical case d 2 = O(g) > 0 one can apply the expansions (3.8). But if d 2 --- O(~) < 0, the 
rel~alar expansions are no longer valid; this is again a case of a "missed target". When d 2 = 1 - s212 = 
--a2~ 2, regular expansions are possible if in addition a 2 < 1, in particular, when a 2 = O(~). 

Let us consider the case of a singular representation of 0 when I s I />  1 or c t> 0. We obtain 

0 = ~-a0_t +~0j +~303 +~5 .... 0_ I =2  

(3.10) 
01=2c1-1, 0 3 = 1 2 - 1 + ( I - 8 c l ) ( 2 c 1 - 1 )  .... 

The first term :in (3.10) corresponds to the total time of deceleration and re-entry to the sphere; the 
velocity of approach is of the order of h = ~-l. The small increments O(~), etc. characterize delicate 
effects of nearly 'time-optimal manoeuvres. 

3.5. Asymptotic behaviour of  the Bellman function at great distances and high velocities. It is now natural 
to examine a situation in which 1, h >> 1. To fix our ideas, let us first take quantities of the same order 
of magnitude: l =: e-lL, h = e-lH, where 0 < e "~ 1 is a small parameter. Equation (3.1), which defines 
the function 0, becomes 

/.2 + 2 c L H 0 + H 2 0 2  = £ 2 ( 0 2 / 2 + 1 ) 2  L,H - I (3.11) 

The unknown function 0 admits of both regular and singular representations as expansions in powers 
of e, which will now be constructed. Regular expansions may occur ifs = eS, S - 1, where s is the size 
of the angle between the vectors x and v. Standard methods yield 

0 = 00 + ~ l  + E202 + E3 .... 00 = LH-I 

01 = -((0o 2 / 2 + l) 2 - $202) Y~, 02 = 0oH-2(0  / 2 + 1)-  ~ 0 o  $2) .... 

(3.12) 

It is assumed here that the expression for 01 is defined (real) and strictly negative; in the case 01 = 0 
one must also an:dyse this expression. If s is small to a higher order, say s = e'S, a solution in the form 
of (3.12) always exists. 

We will now consider singular expansions of 0, which occur when s - 1. Put 0 = 8-119; we have the 
following equation for the unknown 19 - 1 

04 + (t202 + 84 = ¢2 L 2 + 2e.cLHO + H2O 2 (3.13) 

Equation (3.13) is practically identical with the analogue of (3.7) for the "missed target" case (s2/2 
> 1); the required expansion 19 = 2H + ecLH q + e 2 . . .  is found in the same way. 

Now suppose tlhat I and h are of different orders of magnitude. The interesting situation is I = e-2L, 
h = e-ill. Obvio,asly, 0 will be asymptotically large, i.e. 0 = e-119. Substituting this expression into 
Eq. (3.1), we reduce it to the form 

/1/4 04 + £2 (02 + £2 ) = L 2 + 2 c L H O  + n 2 0 2  (3.14) 

Apart from terms O(e2), this equation is identical with that investigated in [5]. It transforms formally 
to an expression containing no perturbations 

~ O  4 = L .2 +2c*L*H*O+H*202 

(3.15) 
L*2=L2-(~ 4, H * 2 = H 2 - E  2, c*=c(LIL*)(HIH*) 

One must bear in mind here that L 2, H 2 ~ 1, i.e. L* and H* are defined, and the quantity c* varie~ 
between limits that are greater, by quantities O(e2), than c (-1 ~< c ~< 1). A complete numerical solution 
has been obtained for Eq. (3.15) [5]. One can thus determine the solution of Eq. (3.14). Note that the 
same equation is obtained in the case of a sphere of asymptotically small radius with a different 
normalization. 

The reverse situation, when I = e-lL, h = e-2H, is basically similar to that investigated in Section 3.4. 
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3.6. Behaviour of the Bellman function near the sphere surface. Let us consider an approximate 
expression for 0 at I = 1 + e, where e ~- 0, I £ I '~ 1, i.e. near the sphere. Substituting the value of I into 
Eq. (3.1), we obtain 

04 - 4k02 = 8chO + 4h202 + 4£(2 + £ + 2ch0) 
(3.16) 

k = + l ,  £ X 0 ;  0=00+£01+£202+£3. . .  

The solution of the equation according to (3.16) will be sought as a series in integer powers of £, on 
the assumption that c - 1, h - 1. When £ = 0 we obtain the following expressions for the unknown 00 

00P(00) = 0, P(0) -= 03 - 4(~, + h 2 )0 - 8ch (3.17) 

00=0 ,  00=min  a rgP(0)>0  

These expressions admit of two possibilities, both of which will be considered. The first root (zero) leads 
to expansions 

00 = 0, 01 = -(ch) -I, 02 = -~O,+h2)(ch) -3 +~(ch) -I .... (3.18) 

The principal term in expansion (3.16) and (3.18) will be £01 = -e(ch) -l. Since 0 > 0, the condition 
that e0a should be positive yields the inequality eC < 0. Thus, for £ < 0 (l < 1, Z, = 1), the vector v 
must be directed out of the sphere (c > 0); conversely, when £ > 0 (l > 1, Z. = -1), v must be directed 
into the sphere (c < 0). 

l e t  us consider the critical case, when ch = elf, Y - 1. In the general case the expansions are in powers 
of l £ I la 

O=l£1~(2(IT-y)l(l-h2))~+lEI .... h2~:l, E ~ 0 ,  2~=-I-1 (3.19) 

and they exist if the expression for 01 is real. The other critical cases may be studied similarly. 
l e t  us investigate the other situation, when the velocity at points inside the sphere (l < 1) is directed 

inwards (c < 0), while that of points outside the sphere (l > 1) is directed outwards (c > 0). The unknown 
00 in (3.16) is determined by the second expression in (3.17). 

We will now investigate the roots of the cubic equations (3.17). We have to find the minimum positive 
root 00 as a function of the parameters h, c and Z. = + 1. We first use Cardano's formulae, solving for 
h = h(0, c, ~) 

h = - c 0  - l+(c20 - 2 + 0 2 / 4 - ; ~ )  ~ ,  c ~ 0 ,  k = + l  (3.20) 

It follows from (3.20) that ifc < 0, ~. = 1 (l < 1), the family of curves 0(rl, c, 1) consists of two non- 
monotone families of branches (the ± signs in (3.20)), while when c > 0, ~. = -1 (l > 1) the curve 0(h, 
c, -1) consists of one monotone increasing family of branches (with plus sign; the minus sign leads to 
h < 0). It is assumed here that h is the argument and c is the parameter of the families. 

We will now apply Cardano's formulae directly to the equation P(00) = 0 of (3.17). As usual, we 
define 

p = - 4 ( k + h 2 ) ,  q=-8ch, d = q  2 / 4 + p  3/27 (3.21) 

There are three possibilities. Let d < 0, which is surely the case when -1 < c < 0, ~. = 1 (l < 1). 
Then the equation admits of two positive roots (and one negative one), which are calculated by the 
formula 

0(o k) = (-q 1 2 :t: jldl ~ )~ + (-q 12 T- jldl )~ ) ) ~  O, 

k = 1,2,3, 0(0 k) =21at, I.t k =Re( -q l2+j ld l~ )  )~ 

j=4zi 
(3.22) 

Of the two positive roots Ok, choose the least. Note that d < 0 is also true when 0 < c < 1 (k = -1, 
I > 1), ifh 1> 2, and when 1 < h < 2 if0 < c < f(h), wheref(h) -~ (4/27)1/2(h 2 -  1)3/2h-I. In this situation 
Eq. (3.17) admits of one positive and two negative roots, which are calculated by formulae (3.22). 
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Let d = 0, which is the case only when c = -1 for h = 1/~/2 (k = 1, l < 1, the point is inside the 
sphere) and wher~ 0 < c < 1, c = f (h )  for 1 < h < 2 (k = -1, l > 1, the point is outside the sphere). In 
that case Eq. (3.17) has three real roots, two of which coincide 

O(0 I) = -2(q / 2) ~,  0(02'3) = (q / 2) )~, q = -8ch (3.23) 

As follows from (3.21), in the first situation (c = -1) the double root 0(02~) (3.23) is positive, 
while in the second (c = f(h)) the required root is 0(~ ) (3.23). 

Now let d > 0, which may occur only when 1 < h < 2 for 1 > c > f(h) > 0 (~. = -1, l > 1, a point 
outside sphere) and for 0 < h < 1, 0 < c < 1. Then Eq. (3.17) admits of one positive real root 00 

0 o = ( -q  12 + d ~ )~ + ( -q  12 - d Y2 ))6 q = -8ch < 0 (3.24) 

These expressions for the roots may also be formulated in trigonometric notation. They form the 
basis, via perturbation methods, for the construction of regular expansions in powers of e in all cases 
other than the critical, which corresponds to a double root 0 (o 2,3) (3.23) when c = -1. In the latter case, 
Eq. (3.1) (as well as (3.16)) can be solved exactly by elementary analytical means (see Section 3.9). 

The required e~ansions  are 

0 := 00 + e01 + E202 + e 3 .... 0 o = 00 (h, c, k), 01 = 8(1 + chO o)(Po + OoPo) -l (3.25) 

02 = (8ch01 + 4 -  (P~ +)600Po0')0~)(P0 +00P~) -I ..... P0 = P(00) 

where 00 = 0 or (]0 = mink 00 (k) > 0 according to (3.17) and the computations (3.22)--(3.24). Note that 
special expressions for 00 = 0 already appear in (3.18) and (3.19). The main meaningful comment 
concerns the principal terms of expansions (3.18), (3.19) and (3.25); this comment was made previously. 

3.7. Behaviour c f  the Bellman function when the radius vector and velocity vector are orthogonal to each 
other. We will now investigate the situation in which I c I "~ 1 but I - 1, h - 1. Equation (3.1) reduces 
at c = 0 to a biquadratic equation, whose solution is 

00 = . ~ ( h  2 +~,:l:((h 2 +~.)2 +12 _!))~)~2, ;L ='t'1, lX 1 (3.26) 

Note that the fanction 00 (3.26) is not continuous as I --> 1 _+ 0; we will assume from now on that l 
X 1 (the case I = 1 _+ e has already been studied). Under this condition 00 is a simple root, and we 
obtain the following regular expansion for the quantity z = 02 

Z ---- 7. 0 4- F..Z I 4-1~2Z2 4" ~3 . . . .  Z 0 = 0~, Zl = 21hO0 d-I 
(3.27) 

Z2 = 212h2d-2 -12h202d-3, d = :l:((h 2 + 1) 2 + l 2 -1) ~,  IX 1 

Expression (3.26) for 00 is fairly cumbersome and difficult to interpret. Nevertheless, its limiting values 
at l ~ 0, 1, o. and/or as h ~ 0, oo correspond to intuitive expectations. The next increment czl allows 
for an increase or decrease in the response time, depending on the sign of the parameter c and the 
position of the point (l _~ 1). 

3.8. Invesa'gation of  the Bellman function near the degenerate case of almost collinear position and velocity 
vectors. We will now construct an approximate solution of Eq. (3.1) in the case c = 1 - e ,~ 1. The root 
values when e = 0 (c = -1) are 

O 0 = :l:h + (h  2 :I: 2(1 - 1)) '~, l ~ 1 (3.28) 

This expression corresponds to one-dimensional motion and needs no explanation. In the general 
position, the root 00 (3.28) is simple, and correction of this value for e > 0 is achieved by standard 
means 

OfOo+l~O I +~202 +c3 .... 00 =00(h,/), 01 =-21hOo d-l 
(3.29) 

0:: = ((h 2 + ~, - 30~ / 2)0,2 - 21hO~ )d -a ..... d = 0g - 2(h 2 + ~,)00 - 21h 



724 L.D.  Akulenko 

The fact that there is a small angle ot (ot2/2 = e) between the vectors causes an increase (l < 1) or 
decrease (l > 1) in the optimal time of motion, as is intuitively obvious. 

3.9. Analysis of  the Bellman function near the degenerate case of  almost anti-collinear position and velocity 
vectors. Proceeding by analogy with the previous case, let us consider the situation c = -1 + e, 0 ~< e 
• < 1. Setting ~ = 0, we obtain 

00 = -[~h + 'y'(h 2 + 2(Z, + [~l)) )~ (3.30) 

Here the signs in ? = _1,  I] = +- 1 are independent. Analysis shows that for I < 1 (X = 1) the quantity 
00 is described by two expressions 

0 0 = h + ( h  2 + 2 ( 1 - l ) )  ~ ,  0 < h  2~<! 2 / 2  

(3.31) 
0 o = - h + ( h  2 +2(1+1)) ~ ,  h2>l  2 / 2  

If the point is outside the sphere (l > 1, Z. = -1), the response time is always described by one expression 

00 = -h  + (h 2 + 2(1 - !)) )6, h > 0 (3.32) 

These expressiohs are elementary and need no explanation. We need only note that the expressions 
(3.31) do not join up smoothly, but the value of 00 =- ~/2 along the "seam" is constant, that is, is inde- 
pendent of I and h (l < I); see Section 4. 

The function 0 in the situation of the general position is corrected by standard means 

0 = 00 + e0 t + 0202 + 03 .... 00 = 00 (h, l), Oj = 21hOo d-t 

02 = ((h 2 + ~. - 3002 / 2)0~ + 21hO~ )d -j ..... d = 03 - 2(h 2 + ~.)00 + 21h 
(3.33) 

The quantities 00 in (3.33) are defined as in (3.31) and (3.32). The expressions for 0i and d in these 
expansions differ from the corresponding expressions in (3.29) only in the sign of 2//,. 

In this section we have presented a fairly detailed investigation of the analytical properties of the 
Bellman function in the neighbourhood of states where an exact analytical solution is possible. We have 
also presented an asymptotic analysis for large values of the parameters of motion (l, h --¢ **). It is of 
considerable interest to compare these analytic results with the results of  a fairly comprehensive numeri- 
cal solution of the optimal control problem. 

4. R E S U L T S  OF N U M E R I C A L  S I M U L A T I O N  

A direct numerical solution of the fourth-degree algebraic equation (3.1) for 0 = 0(h, c, l, Z.) and the 
choice of the minimum positive value for the unbounded domain of the parameters h and I is an extremely 
laborious task. The function 0 may be represented as a family of surfaces in the first octant of the three- 
dimensional space (0, h, l), for which -1 ~< c ~< 1 is the parameter of  the family, ~ = _.+ 1. However, the 
construction of the family involves very cumbersome and non-intuitive results, because of the difficulty 
of projecting the surfaces. Preliminary analysis shows that it is preferable to define the family of curves 
(0, h) with parameter c for a comparatively small number of values of the parameter l. 

The construction of the functions 0(h) for fixed c and I is simplified, reducing to explicit algebraic 
expressions, if the quadratic equation (3.1) is solved for h = h(0, c, l, ~). We have [5] 

h = )6 0-2 ( -20c /+  y(402c2/2 + 402 ((02 / 2 - ~.)2 _ l 2))~j ) 

h ~ 0 ,  0 > 0 ,  l ~ l ,  X = + I , - l ~ < c ~ l ,  ~'=+1 
(4.1) 

Instead of the unknown functions O(h), the inverse function h(0) given by this expression can be 
investigated analytically and numerically. Mathematical simulation using formula (4.1) produced a 
graphical solution 0(h, c, l) corresponding to the analysis of the behaviour of the Bellman function carried 
out in Section 3. We will now present and investigate a few typical families of curves (varying c as 
parameter) for different values of 1/> 0. 
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We first consider the situation 0 ~< l ,~ 1, represented in Figs 1 and 2. Figure 2 shows the family of 
curves for ci = -1 + 0.2/, i = 0, 1 , . . . ,  10 (with stepsize Ac = 0.2) and two values of l: l = 0 (Section 
3.1) and I = 0.5 (the "general" case). When l = 0 the family is independent o f c  (see (3.2)) and merges 
into a single curve, issuing from the point 00 = ~/2 at h = 0. The behaviour of the curves for 0 ~< l ~ 1 
is in perfect agreement with the analytic results of Section 3. Let us examine the families of curves for 
different values of I. The general point 0 from which the curves of each family issue for h t> 0 ascends 
to the value 0 = "42, while the family begins to narrow down ("merging") as I -4 0, tending to the 
aforementioned single curve (3.2). As I --> 1 the family begins to spread out and to fill the strip 0 ~< 0 

~/2, and the point from which the family issues is such that 0 -~ 0 as I -~ 1 (see Fig. 2). The analysis 
of Section 3.6 is in complete agreement with the situation I = 1 - e; see also Section 3.8 (c = -1 + e) 
and Section 3.9 (c = 1 - e), 0 < e < 1. Thus, inside the sphere x ~ B, the families of curves and the 
Bellman function vary fairly monotonically and smoothly, except in the degenerate case c = -1, which 
produces corner points. The change in the Bellman function is also quite intensive near h = 0 and as 
1-4 1 (the irregularity of 0 becomes worse up to the discontinuity). 

We will now consider the results of  the simulation fo rx  ~ B (l > 1), see Figs 3-5. Let  us begin with 
a case in which the point is near the sphere, say, l = 1.1 (Fig. 3); this family of curves corresponds to 
the analysis in Sea:ion 3.6. The curves do not represent the single-valued functions, because, for technical 
reasons, the figurq~s include all roots, not only the minimum ones (the four curves on the uppe~ right 
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! 
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Fig. 4. 
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Fig. 5. 

should be removed). Note that in the neighbourhood of c = -0.4 there is a marked change in the response 
time as a function of c and h, because of  the possibility of a "miss". Attention should be drawn to the 
behaviour of the family of curves vertically upwards: they depart upwards, pointing at and approaching 
the straight line 0 - 2h, h ~ 0-; see Section 3.4 and formula (3.10). 

Figure 4 depicts the "general" situation I > 1, l - 1 (in the figure, 1 = 2). The family of curves shown 
confirms the analysis for h ,~ 1, h -> 1, c = 1 + e, c = e, where 0 < I e I "~ 1. Attention should be drawn 
to the jump in the optimal time of  motion when a "miss" occurs at c = -0.8. As already noted, the 
family departs upwards to the right, as in (3.10). 

Let  us now consider the case when I -> 2, see Sections 3.2 and 3.5, in particular, l = 10 (Fig. 5). The 
family of curves is similar to that constructed for a sphere of asymptotically small radius (the point hits 
the origin [5]). At values of c close to c = -1 (see Section 3.9), a more densely packed family is given: 
c = -1 + 0.05i, i = 0, 1 , . . . ,  6, then Ac = 0.3, and then At: = 0.2 from c = -0.4 to c = 1. One should 
note the very subtle difference between the case of a sphere of  non-zero radius and the limiting ease 
of a point. Near values c = -1 there is a narrow family of curves that decrease monotonically as h 
**, i.e. without any sudden change in the response time. Outside this thin layer a range of values c < 0 
exists that permits misses and non-monotone behaviour of 0 as a function of  h (for fixed c) and 
discontinuity of the Bellman function. Then comes a range of values (from a few negative values to c 
= 1) that produce 0 as a monotone smooth function o f h  ("flight with return"). 

Thus, we have carried out a fairly detailed construction and investigation of the Bellman function 
for the problem of the time-optimal approach of a point mass to a sphere (intersection of the sphere) 
of finite radius, under the action of  a force of limited magnitude. We have established that, depending 
on the values of the phase variables, the Bellman function has certain properties of non-smoothness 
and discontinuity; we have determined the nature of these irregularities. We have in fact constructed 
a picture of the synthesis (see Section 2). Note that this solves the problem of a point approaching a 
cylindrical subspace, in particular, a hyperplane. 
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